Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nazan Ocak Ískeleli, ${ }^{\text {a }}$ Sehriman Atalay, ${ }^{\text {a }}$ Erbil Ağar ${ }^{\text {b }}$ and Nesuhi Akdemir ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.127$
Data-to-parameter ratio $=18.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(2-Bromo-4,5-dimethoxybenzyloxy)phthalonitrile

The title phthalonitrile derivative, $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3}$, contains two aromatic rings, which are nearly coplanar. The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions.

Comment

Monosubstituted phthalonitriles have been used as starting materials for symmetrically and unsymmetrically monosubstituted phthalocyanines and subphthalocyanines (McKeown, 1998), which are important components for dyes, pigments, gas sensors, optical limiters and liquid crystals, and which are also used in medicine, as singlet oxygen photosensitizers for photodynamic therapy (PDT) (Leznoff \& Lever, 1989-1996).

(I)

The molecule of the title compound, (I), is shown in Fig. 1. The lengths of the two $\mathrm{C} \equiv \mathrm{N}$ triple bonds (Table 1) are consistent with those found in similar compounds (Atalay et al., 2003; Erdem et al., 2004; Ískeleli \& Ağar, 2005). The C-Br bond distance is close to the values reported for 4-(3-bromo-benzylideneamino)-3-(4-chlorobenzyl)-4,5-dihydro-1H-1,2,4-triazol-5-one (Atalay et al., 2004). The two aromatic rings in the molecule are nearly coplanar, the dihedral angle being $1.23(3)^{\circ}$.

Figure 1
A drawing of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 21 June 2005 Accepted 24 June 2005 Online 30 June 2005
\qquad

The crystal structure of (I) is stabilized by inter- and intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions (Table 2).

Experimental

2-Bromo-4,5-dimethoxybenzyl alcohol ($1.54 \mathrm{~g}, 6.23 \mathrm{mmol}$) and 4-nitrophthalonitrile ($1.0 \mathrm{~g}, 5.78 \mathrm{mmol}$) were dissolved in dry dimethylformamide (40 ml) with stirring under N_{2} at 323 K . Dry finepowdered potassium carbonate $(1.4 \mathrm{~g}, 10.00 \mathrm{mmol})$ was added in portions ($10 \times 1 \mathrm{mmol}$) every 10 min . The reaction mixture was stirred for 48 h at 323 K and then poured into ice-water (200 g). The product was filtered off and washed with NaOH solution $(10 \%(w / w)$ and water until the filtrate was neutral. Recrystallization from ethanol gave a white product (yield $0.96 \mathrm{~g}, 44.431 \%$). Single crystals of (I) were obtained from absolute ethanol at room temperature by slow evaporation (m.p. 429-431 K). Elemental analysis, calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3}$: C 54.71, H 3.51, N 7.51%; found: C 54.66 , H 3.50, N 7.58%.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3}$
$M_{r}=373.20$
Monoclinic, $P 2_{1} / c$
$a=8.7619$ (5) \AA
$b=9.8234$ (7) \AA
$c=18.5527$ (10) \AA
$\beta=92.270(4)^{\circ}$
$V=1595.61(17) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.782, T_{\text {max }}=0.898$
27104 measured reflections
3831 independent reflections

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043\)
\(w R\left(F^{2}\right)=0.127\)
\(S=1.11\)
3831 reflections
209 parameters
H -atom parameters constrained
```

```
\(D_{x}=1.554 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation
Cell parameters from 23864
        reflections
\(\theta=2.2-28.0^{\circ}\)
\(\mu=2.59 \mathrm{~mm}^{-1}\)
\(T=296 \mathrm{~K}\)
Prism, colourless
\(0.51 \times 0.37 \times 0.25 \mathrm{~mm}\)
```

2815 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.084$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-24 \rightarrow 24$

$$
\begin{aligned}
& \left.\begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0723 P)^{2}\right. \\
\quad \\
\quad+0.0205 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.95 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.74 \mathrm{e}^{-3} \AA^{-3} \\
\text { Extinction correction: SHELXL97 } \\
\quad \text { (Sheldrick, 1997) } \\
\text { Extinction coefficient: } 0.033
\end{array}\right\} .(3)
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{C} 1-\mathrm{N} 1$	$1.136(4)$	$\mathrm{C} 13-\mathrm{O} 3$	$1.362(3)$
$\mathrm{C} 2-\mathrm{N} 2$	$1.141(4)$	$\mathrm{C} 15-\mathrm{Br} 1$	$1.904(3)$
$\mathrm{C} 6-\mathrm{O} 1$	$1.347(3)$	$\mathrm{C} 16-\mathrm{O} 2$	$1.419(3)$
$\mathrm{C} 9-\mathrm{O} 1$	$1.428(3)$	$\mathrm{C} 17-\mathrm{O} 3$	$1.427(4)$
$\mathrm{C} 12-\mathrm{O} 2$	$1.359(3)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.55	$3.323(4)$	140
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 1$	0.93	2.28	$2.655(3)$	103

Symmetry code: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.
H atoms were positioned geometrically and treated using a riding model, with aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and methylene C-H distances of $0.97 \AA . U_{\text {iso }}(\mathrm{H})$ values were set at $x U_{\text {eq }}$ (carrier atom), where $x=1.5$ for methyl H and 1.2 for other H atoms.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Atalay, Ş., Ağar, A., Akdemir, N. \& Ağar, E. (2003). Acta Cryst. E59, o1111o1112.
Atalay, Ş., Yavuz, M., Kahveci, B., Ağar, E. \& Şaşmaz, Ş. (2004). Acta Cryst. E60, o2119-o2121.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Erdem, T. K., Atalay, Ş., Akdemir, N., Ağar, E. \& Kantar, C. (2004). Acta Cryst. E60, o1849-o1850.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 and 4. New York: Weinheim-VCH Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Ískeleli, N. O. \& Ağar, A. (2005). Acta Cryst. E61, o1942-o1943.

